NIRCam Time-Series Imaging Target Acquisition
JWST NIRCam target acquisition (TA) positions the source with subpixel accuracy on a specific part of the detector.
See also: NIRCam Target Acquisition, NIRCam Time-Series Imaging
Words in bold are GUI menus/
panels or data software packages;
bold italics are buttons in GUI
tools or package parameters.
Time-series imaging uses one SW detector and the LW detector in module B. In addition to the FULLP array, users can select the point source apertures, associated to subarrays located outer top corner of module B: SUB64P, SUB160P, or SUB400P (Figure 1). These subarray locations were selected because they are relatively free of bad pixels. (They are also available in the NIRCam imaging mode.) The TA subarray is offset from the science subarrays to avoid saturating the pixels used for the science exposures.
The generic aspects of NIRCam TA are described in the NIRCam Target Acquisition article.
The unique aspects of TA for NIRCam time series are:
- The TA subarray is 32 × 32 pixels in size and is on the long wavelength detector on module B.
- Users may select either the F335M or F405N filter for TA.
- Using F405N allows acquisition of targets approximately 2.5 magnitudes brighter than F335M, depending on the spectrum of the target.
- Using F405N allows acquisition of targets approximately 2.5 magnitudes brighter than F335M, depending on the spectrum of the target.
- After the onboard TA process completes, a slew moves the target from the center of the TA subarray to one of the 2 science field points indicated by yellow stars in Figure 1, as described above.
Target acquisition saturation and sensitivity limits
See also: NIRCam Bright Source Limits
The time-series TA subarray frame time is 0.015 s. It is recommended that users choose a TA exposure time that achieves a signal-to-noise ratio (SNR) of >30, which enables a centroid accuracy of <0.15 pixel. Any readout pattern is available for TA, with Ngroups = 3, 5, 9, 17, 33, or 65. Approximate F335M and F405N saturation and sensitivity limits for NIRCam grism time series, and time-series TA, are summarized below. Limits are for a G2V star and are given in Vega magnitudes. Users should use the Exposure Time Calculator (ETC) to estimate appropriate TA integration times for their targets.
- Bright limit:
- Readout pattern = RAPID, Ngroups = 3 (0.06 s integration)
- mK = 7.0 (using F335M)
- mK = 3.6 (using F405N)
- Readout pattern = RAPID, Ngroups = 3 (0.06 s integration)
- Faint limit:
- Readout pattern = DEEP8, Ngroups = 65 (19.3 s integration)
- mK = 19.0 (using F335M)
- mK = 15.9 (using F405N)
- Readout pattern = DEEP8, Ngroups = 65 (19.3 s integration)
The bright limit for TA through the F405N filter is approximately 3.5–4.0 magnitudes brighter, depending on the spectrum of the target. The figures and discussion below are intended to help observers determine whether to accept some saturation in their TA images acquired using F335M, or to switch to the F405N filter in order to achieve higher TA accuracy at the expense of longer TA integration time.
When the TA integration saturates the accuracy of the onboard centroiding algorithm is degraded. Modeling has been performed to characterize the effects of saturation, and the results are summarized below. The immediate effect of saturation is that the core of the observed PSF appears dark in the image used by the target location algorithm, as seen in Figure 2. The modeling indicates that centroiding accuracy degrades gradually as saturation increases, as summarized in Figure 3.