Step-by-Step APT Guide for NIRCam Deep Field Imaging with MIRI Imaging Parallels
This walk-through of the JWST Astronomer's Proposal Tool (APT) demonstrates how to specify the observations determined in the ETC step-by-step example for example science program #22: NIRCam Deep Field Imaging with MIRI Imaging Parallels.
Example Science Program #22 APT Guide
On this page
APT file
See also:
NIRCam Imaging APT Template, NIRCam Imaging Recommended Strategies, JWST APT Help, JWST APT Video Tutorials
A filled out APT file can be accessed via the menu options File → JWST Example Science Proposals → NIRCam →22 NIRCam DeepField Imaging with MIRI Imaging Parallels in APT. The APT file was created with version 2024.1. There may be inconsistencies, warnings, or errors with other versions of APT.
Fill Out Proposal Information
See also: JWST Astronomers Proposal Tool Overview
Words in bold are GUI menus/
panels or data software packages;
bold italics are buttons in GUI
tools or package parameters.
Specify the target
See also: APT Targets
This program is targeting the GOODS-S field with a 2 × 2 NIRCam mosaic. There are a few options for entering a target in APT; In this example, specify an individual fixed target. To start, create a new fixed target at RA = 03h 32m 42.7s, Dec = -27d 47m 59.7s. By setting this specific position (instead of the center of the GOODS-S field), the NIRCam and MIRI observations will fall completely within the CANDELS coverage (see Figure 1), given a specific position angle (see Special Requirements).
Observations
See also: APT Observations
To get started, create a new observation inside an Observation Folder. From there, select NIRCam as the Prime Instrument and NIRCam Imaging as the Template. Check the Coordinated Parallel box and select NIRCam-MIRI Imaging. Finally, choose the target defined above from the pull-down menu. When editing the "Observation", the tabs on the lower half of the GUI screen contain the detector specifications.
Define imaging observations
See also: NIRCam Imaging APT Template, NIRCam Imaging Recommended Strategies
To set up the NIRCam imaging, click to the NIRCam Imaging tab (leftmost tab on the lower half of the APT screen). Since this program will be imaging a large area, set the Module to ALL and Subarray to FULL, which together encompass all pixels in all 10 NIRCam detectors, providing the largest possible spatial coverage. The default target placement is in the ~44" module gap. While this places the target off of the detectors, a mosaic will be used to cover the gap. See the NIRCam Field of View article for details.
Data volume and Excess
See also: JWST Data Volume and Data Excess
For deep imaging that uses all 10 NIRCam detectors plus parallels, data volume can add up quickly. For this particular program, the data volume is high enough that the observations must be split into an individual observation for each filter instead of including all filters within a single observation, in the Filters panel. This increases the overheads slightly, while allowing for more flexibility in defining exposure times for each filter. See JWST Data Volume and Data Excess for more information on APT errors and warnings regarding data excess.
Mosaic parameters
See also: JWST Mosaic Overview, NIRCam Dithers and Mosaics
To cover the necessary spatial area, this program uses a mosaic with 2 rows and 2 columns. The Row Overlap % is set to 20% and the Column Overlap % is set to 78%. These overlaps are defined relative to the NIRCam field of view. The 78% column overlap ensures 2 things: (1) that the large gap between the NIRCam modules is covered, and (2) that the MIRI coverage is continuous. The resulting NIRCam mosaic has 2 wide stripes of increased (2×) depth where the modules overlap. Figure 1 shows the Aladin visualization. The NIRCam mosaic covers approximately 25 square arcmin, and the MIRI mosaic covers approximately 7 square arcmin.
NIRCam dithers
See also: NIRCam Primary Dithers, JWST Coordinated Parallels Custom Dithers
This program uses 4INTRAMODULEBOX primary dithers to cover detector gaps in the SW channel and yield coverage of a rectangular region. The 9-POINT-WITH-MIRI-F770W coordinated parallel subpixel dither pattern is also used to improve the spatial resolution of both the NIRCam and MIRI images. Altogether, there are 36 dithers for each exposure specification.
NIRCam filters
See also: NIRCam Filters
In the Filters panel, specify the required filters, readout patterns, and exposures. NIRCam has a short wavelength and a long wavelength channel that produce simultaneous imaging (via a dichroic) over the same field of view. Programs can therefore select one filter for each channel for each exposure sequence in the Filters box, and both will be observed with the identical readout patterns and total exposure time. Filters used in this program are summarized in Tables 1 and 2.
NIRCam readout patterns
See also: NIRCam Detector Readout Patterns
As described in the ETC Guide, this program uses the DEEP8 Readout pattern, which is designed for deep imaging and is required here to reduce data volume. To limit each integration time to <1,000 s, 5Groups/Int are used. To achieve the required depth, this program performs 36 exposures (dithers). The Total Exposure Time displayed at the end of the row in the Filters box includes all integrations and dithers, and is set up to achieve about 34 ks in some filters and 68 ks in others. See the ETC Guide for explanations about the selected exposure times.
MIRI parallels
See also: MIRI Imaging, MIRI Detector Readout Overview
The parallel MIRI observations are specified under the MIRI Imaging tab. The program uses the F770W filter. Readout pattern SLOWR1 is used for all observations, and is required to reduce data volume. Each MIRI integration time is set to match (or be slightly less than) each NIRCam integration times.
Table 1. Exposure parameters for prime NIRCam imaging observations
Observation # | NIRCam SW Filter | NIRCam LW Filter | NIRCam Readout | NIRCam Groups/Int | NIRCam Integrations/Exp | Primary Dithers | Secondary Dithers | NIRCam Exposure Time (s) | NIRCam Exposure Time (hr) |
---|---|---|---|---|---|---|---|---|---|
1 | F090W | F410M | DEEP8 | 5 | 1 | 4 | 9 | 34014 | 9.4 |
2 | F090W | F410M | DEEP8 | 5 | 1 | 4 | 9 | 34014 | 9.4 |
3 | F200W | F335M | DEEP8 | 5 | 1 | 4 | 9 | 34014 | 9.4 |
4 | F150W | F444W | DEEP8 | 5 | 1 | 4 | 9 | 34014 | 9.4 |
5 | F150W | F444W | DEEP8 | 5 | 1 | 4 | 9 | 34014 | 9.4 |
6 | F115W | F277W | DEEP8 | 5 | 1 | 4 | 9 | 34014 | 9.4 |
7 | F115W | F356W | DEEP8 | 5 | 1 | 4 | 9 | 34014 | 9.4 |
Table 2. Exposure parameters for parallel MIRI imaging observations
Observation # | MIRI Filter | MIRI Readout | MIRI Groups/Int | MIRI Integrations/Exp | Primary Dithers | Secondary Dithers | MIRI Exposure Time (s) | MIRI Exposure Time (hr) |
---|---|---|---|---|---|---|---|---|
1 | F770W | SLOWR1 | 39 | 1 | 4 | 9 | 33542 | 9.3 |
2 | F770W | SLOWR1 | 39 | 1 | 4 | 9 | 33542 | 9.3 |
3 | F770W | SLOWR1 | 39 | 1 | 4 | 9 | 33542 | 9.3 |
4 | F770W | SLOWR1 | 39 | 1 | 4 | 9 | 33542 | 9.3 |
5 | F770W | SLOWR1 | 39 | 1 | 4 | 9 | 33542 | 9.3 |
6 | F770W | SLOWR1 | 39 | 1 | 4 | 9 | 33542 | 9.3 |
7 | F770W | SLOWR1 | 39 | 1 | 4 | 9 | 33542 | 9.3 |
Define special requirements
See also: APT Special Requirements
To ensure that the NIRCam and MIRI maps fall mostly within the CANDELS region and includes the ACS Ultra Deep Field, you need to restrict the position angle of the observations. Under the Special Requirements tab, add a PA Range of 304°–330° for each of the observations. This range also avoids the meteor avoidance zone (MAZ).
It is important to set the PA range for each observation instead of using the Same PA Link option because the visits are so long (see below), it is impossible for them all to be observed at the exact same position angle.
Run Visit Planner
See also: APT Visit Planner
To determine the schedulability window of our proposed observations, run the Visit Planner Tool. The position angle requirement restricts the observations to a 26 day window in October.
Run Smart Accounting
See also: APT Smart Accounting
After running Smart Accounting to reduce overheads, the total charged time (in APT 2024.1) is 348.79 hours, of which 264.60 hours is science time with NIRCam and MIRI in parallel.
References
Presentations from the May 2017 JWST Proposal Planning Workshop