Page tree

James Webb Space Telescope User Documentation

 

 

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Multiexcerpt
MultiExcerptNameNIRISS_WFSS_NIRCam_Lensing


Content Block
overflowauto
meta-propertiestrue
nameSummary
id277319516
classpdf-full

A walk-through of the JWST ETC for the NIRISS WFSS Science Use Case is provided, demonstrating how to select exposure parameters for this observing program. Additional calculations are described to highlight considerations of which a user should be cognizant when running ETC calculations for the WFSS observing mode.


Content Block
overflowauto
nameContent
id277805920
classpdf-full

Introduction

Main article: NIRISS Wide Field Slitless Spectroscopy, JWST ETC Exposure Time Calculator Overview
See also: Video Tutorials 

The JWST Exposure Time Calculator performs signal-to-noise (SNR) calculations for the JWST observing modes. Sources of interest are defined by the user and assigned to scenes which are used by the ETC to run calculations for the requested observing mode.

For the "Using NIRISS WFSS and NIRCam Imaging to Observe Galaxies Within Lensing Clusters" Science Use Case, we focus on selecting exposure parameters for NIRISS WFSS as the prime observing mode. Direct images are taken before and after each set of dithered grism exposures for the NIRISS WFSS mode.

We start by defining a scene of sources relevant to this science case. We show how to run ETC calculations to achieve the desired SNR for both the direct imaging and grism observations. The optimal exposure specifications (e.g., number of groups and integrations) are the input needed for the Astronomer's Proposal Tool (APT) observation template, which is used to specify an observing program and submit proposals.

We also discuss ETC calculations which highlight considerations relevant to the WFSS observing mode, namely how extended or nearby sources can lead to spectral confusion, degrading resolution.

 


Using ETC to derive exposure parameters for proposal submission in APT 

Main articles: JWST ETC Scenes and Sources Page Overview, JWST ETC Calculations Page Overview

Defining sources for the "Multiple Galaxies" scene

Main articles: JWST ETC Defining a New Source, JWST ETC Source Spectral Energy Distribution

We first set up a scene with multiple galaxies with a range of magnitudes and SED types. We define the following sources in ETC

  • Galaxy mAB= 26: a point source galaxy with a flat continuum, normalized to mAB = 26 in the NIRISS/Imaging F200W filter (Figure 1);

  • Galaxy mAB=28a point source galaxy with a flat continuum, normalized to mAB = 28 in the NIRISS/Imaging F200W filter (Figure 2);

  • Emission Line Galaxy: a point source emission line only galaxy with no continuum, where emission line wavelengths, widths, and intensities are specified in the Lines tab in the Source Editor (Figure 3) as:

    • center = 1.15 μm, width = 1,000 km/s, strength = 8e−18

    • center = 1.5 μm, width = 1,000 km/s, strength = 8e−18

    • center = 2 μm, width = 1,000 km/s, strength = 8e−18

  • Starburst Galaxyan extended (Sersic profile, semi-major axis = 0.3" and semi-minor axis = 0.15") starburst galaxy (using the SED of NGC 3690 from the extragalactic spectral templates available in the ETC) at z = 2, normalized to mab = 25 in the NIRISS/Imaging F200W filter (Figure 4).

In the "ID" tab of the "Source Editor" pane, update the "Source Identity Information" with the name of each source.

Figure container


Figure title

Figure 1. ETC source properties for Galaxy mAB = 26

Figure caption

Top: To define Galaxy mAB = 26 in ETC, enter the "Source Editor" pane and select "Flat Continuum" in the "Continuum" tab. Bottom: In the "Renorm" tab, select the option to "Normalize in bandpass", enter 26 in the dialog box, select "abmag", and select "JWST", "NIRISS/IMAGING", and the "F200W" filter.



Figure container


Figure title

Figure 2. ETC source properties for Galaxy mAB = 28

Figure caption

Top: To define Galaxy mAB = 28 in ETC, enter the "Source Editor" pane and select "Flat Continuum" in the "Continuum" tab. Bottom: In the "Renorm" tab, select the option to "Normalize in bandpass", enter 28 in the dialog box, select "abmag", and select "JWST", "NIRISS/IMAGING", and the "F200W" filter.



Figure container


Figure title

Figure 3. ETC source properties for emission line Galaxy

Figure caption

Top: To define Emission Line Galaxy, select "No Continuum" in the "Continuum" tab of the Source Editor pane. Bottom: In the "Lines" tab, specify the line center (μm), line width (km/s), line strength (erg/cm2/s), and then click "Add." Lines will appear in the table after their properties have been specified and the lines have been added.



Figure container


Figure title

Figure 4. ETC source properties for Starburst Galaxy at z = 2

Figure caption

Top: To define Starburst Galaxy at z = 2, select "Galaxy Spectra from Brown et al. (2014)" from the "Continuum" drop-down menu, then "NGC 3690" from the "Galaxy template" drop-down menu, and set redshift to 2.
Middle: In the "Renorm" tab, select the option to "Normalize in bandpass", enter 25 in the dialog box, select "abmag", and select "JWST", "NIRISS/IMAGING", and the "F200W" filter.
Bottom: To define the source as extended, click "Extended" in the "Shape" tab, set the "Flux distribution" to "Sersic", "Normalization choice" to "Integrated Flux", semi-major axis to 0.3", semi-minor axis to 0.15", and Sersic index to 1.




Assigning sources to "Multiple Galaxies" scene

Main articles: JWST ETC Defining a Scene

Create a new ETC scene by clicking "New" in the "Select a Scene" pane. Assign each of the above sources to this scene by highlighting the source, the scene, and clicking "Add Source" in the "Select a Scene" pane (Figure 5, top).  In the "ID" tab of the "Source Editor" pane, update the "Scene Identity Information" to "Multiple Galaxies" (Figure 5, bottom).

Figure container


Figure title

Figure 5. Assign sources to scene

Figure caption

Top: To assign the four galaxies to the "Multiple Galaxies" scene, highlight the scene (which will appear highlighted in yellow), highlight the source (which will appear highlighted in yellow), and click "Add Source" in the "Select a Scene" pane. The sources that are part of the highlighted scene are highlighted in green in the "Select a Source" pane. If the highlighted source is part of the scene, both the scene and source will be highlighted in yellow and green hashmarks.
Bottom: The scene is named in the "ID" tab of the "Source Editor" pane.


Now that the sources are assigned to a scene, we can define offsets with respect to the center of the scene. In the "Offset" tab of the "Source Editor" pane, specify the following offsets and orientations:


  • Galaxy mAB=26: X offset =  0.7", Y offset = -0.5";

  • Galaxy mAB=28: X offset = 1", Y offset = -1.5";

  • Emission Line Galaxy: X offset = 0, Y offset = 0.5"; 

  • Starburst Galaxy: X offset = -1.5", Y offset = 1.5", Orientation = 30°.

Note that since the first three galaxies are point sources, orientation need not be specified in the "Offset" tab. The position of the sources in the scene can be viewed in the lower left "Scene Sketch" pane. By checking the checkbox in the "Plot" column in the "Select a Source" pane, the SEDs of the selected sources can be plotted. Figure 6 shows the scene sketch and the SEDs of the four galaxies in the scene, where the x-axis in the plot window is restricted to the wavelength range relevant for the NIRISS WFSS mode (0.8 – 2.2 μm).

Figure container


Figure title

Figure 6. Multiple Galaxies scene sketch and SED plots

Figure caption

The position of the sources in the scene is shown in the "Scene Sketch" pane. By checking the checkbox in the "Plot" column of the "Select a Source" pane for the four galaxies in this scene, and restricting the wavelength axis to 0.8 – 2.2 μm, the SEDs are plotted as shown in the "Source Spectrum Plots" pane.




Running ETC calculation for direct imaging

Main article: JWST ETC Creating a New Calculation, JWST ETC Imaging Aperture Photometry Strategy
See also: NIRISS Imaging, JWST ETC BackgroundsJWST ETC Outputs Overview, JWST ETC Batch Expansion

A direct image is taken before and after each set of dithered grism exposures in NIRISS WFSS mode. This program uses both the GR150R and GR150C grisms, which disperses the light in orthogonal directions. There are therefore four direct image exposures per filter. The F115W, F150W, and F200W filters are used in this program.

Our goal is to detect Galaxy mAB = 28 at a SNR ~10 among the filters, so we run ETC calculations to determine the exposure parameters we need to specify to achieve this SNR.

In the "Calculations" tab, select "Imaging" from the "NIRISS" drop-down menu. This step triggers an ETC NIRISS Imaging calculation for the default scene using default parameters.

In the "Scene" tab, select the "Multiple Galaxies" scene in the "Select Scene for Calculation" pull-down menu (Figure 7, top). In the "Backgrounds" tab, update the position to use the coordinates of one of the HST Frontier Fields (04:16:09.40 – 24:04:04.00) for an accurate SNR estimate since the JWST background is position dependent. Select "Medium" for "Background configuration", which corresponds to the 50th percentile of the sky background (Figure 7, bottom).

Figure container


Figure title

Figure 7. Scene and Background tabs for direct imaging calculation

Figure caption

Top: To run the calculation on the "Multiple Galaxies" scene, select this scene from the "Select Scene for Calculation" drop-down menu. Bottom: Enter the coordinates of the target field in the "Background" tab. Selecting the "Medium" option for "Background Configuration" will specify a background at the 50th percentile at that sky position for the SNR calculation.


In the "Instrument Setup" tab, keep the default filter specification of F200W (Figure 8, top). In the "Detector Setup" tab, ensure that the subarray is set to "Full" (only full frame readout is supported for NIRISS imaging) and choose the NIS readout pattern (where four frames are averaged in a group, making this readout pattern the preferred option for longer exposures). Set the number of exposures ("NExposures") to 4 since four direct images will be taken within each filter. Keep the number of groups ("NGroups") at the default value of 10 and the number of integrations ("NIntegrations") at the default value of 1 (Figure 8, bottom).

Figure container


Figure title

Figure 8. Instrument Setup and Detector Setup tabs for direct imaging

Figure caption

Top: Keep the default filter specification of F200W for this calculation. Bottom: Keep the default Full "Subarray" option (only permitted subarray option for NIRSS imaging), NIS "Readout Pattern" option, and 10 groups and 1 integration values. Update number of exposures to 4 since four direct images will be taken through each filter.


To calculate the SNR from the mAB = 28 Galaxy, click on the "Strategy" tab and select the "Centered on Source" option and "Galaxy mab = 28" from the drop-down menu (Figure 9). Keep aperture radius set to 0.1" and the default values for the Sky Annulus parameters for background subtraction (inner radius = 0.22", outer radius = 0.4").

Figure container


Figure title

Figure 9. Strategy tab for direct imaging

Figure caption

To estimate the SNR of the mAB = 28 Galaxy, specify the aperture location as "Centered on source" and select this source from the drop-down menu. The aperture radius (0.1") and sky annulus background (inner radius = 0.22", outer radius = 0.4") are retained at their default values.


Click "Calculate", which initiates the ETC calculation with these updated parameters. The SNR, ~10.9, is reported in the upper left "Calculations" pane and the bottom right "Reports" pane.


To calculate the SNR in the other filters, select "Copy Calculation" in the "Edit" pull-down menu. Copy this calculation twice, and update the filters in the "Instrument Setup" tab for the new calculations to F115W and F150W. When running these new calculations on the updated filters, the SNR is under 10.

The SNR in the F150W filter is the median value, so we want to determine the number of groups needed to achieve a SNR ~10 in this filter. To efficiently run this calculation for a range of groups, where only NGroups is varied, use Batch Expansion. Highlight the calculation for the F150W filter and select "Expand Groups" in the "Expand" pull-down menu (Figure 10, top). In the "Batch Groups Configuration" menu that appears (Figure 10, bottom), update the start value to 11 and keep step size and number of integrations at their default values of 1 and 5, respectively. Click "Submit."

Figure container


Figure title

Figure 10. Batch expansion of number of groups

Figure caption

Top: To repeat the calculation a number of times, varying only the number of groups, select "Expand Groups" in the Expand pull-down menu.
Bottom: In the "Batch Groups Configuration" pane, indicate the starting value for NGroups, the step size by which NGroups will be incremented, and the number of calculations to initiate.


With NGroups ≥ 12, we achieve a SNR > 10. 


Since this program is a coordinated parallel program with NIRCam imaging, there is a balancing act when choosing exposure times. The exposure times for the coordinated mode (including overheads) can not exceed the exposure time of the prime observing mode. However, minimizing dead time, when the coordinated mode is not observing, is also important. From experimentation in APT, we find that choosing 13 groups for NIRISS WFSS direct imaging allows us to achieve our SNR goals while making efficient use of simultaneous NIRCam imaging observations (see the Step-by-Step APT Guide for the corresponding NIRCam specifications). In general, determining optimal exposure parameters may involve some iteration between ETC and APT.

The "Images" pane shows the 2D SNR image for this calculation with the specified exposure parameters (Figure 11, left). Copy the NGroups = 13 calculation twice, and update the filters to F115W and F200W. By selecting the check-box next to the calculations corresponding to these exposure specifications (NGroups = 13, NIntegrations = 1, NExposures = 4) for the various filters, we can compare the predicted SNR through these calculations in the "Plots" pane (Figure 11, right).

Figure container


Figure title

Figure 11. SNR of direct Imaging calculations with chosen exposure parameters (NGroups = 13, NIntegrations = 1, NExposures = 4)

Figure caption

Top: 2D SNR image of the "Multiple Galaxies" scene through the F150W filter.
Bottom: Imaging SNR through the F115W, F150W, and F200W filters.




Running ETC calculation for WFSS

Main article: JWST ETC Aperture Spectral Extraction Strategy

This program uses an 8-step dither pattern for each filter. Our goal is to obtain a SNR ~ 3 per pixel in the emission lines from the Emission Line Galaxy. 

To begin the calculation, select "WFSS" in the NIRISS drop-down menu. Update the scene in the "Select Scene for Calculation" pull-down menu to "Multiple Galaxies." Similar to the direct imaging calculation, enter the coordinates of the field and select "Medium" for "Background Configuration" in the "Backgrounds" tab. In the "Instrument Setup" tab, keep the default grism choice (GR150 row-dispersed) and filter (F115W). In the "Detector Setup" tab, keep the default values for "Subarray" (Full; only full-frame readout is supported for WFSS), readout pattern (NIS), NGroups (10) and NIntegrations (1). Since this program uses eight dither steps, update the number of exposures to 8.

To calculate the SNR for the Emission Line Galaxy, select this source in the "Centered on Source" drop-down menu in the "Strategies" tab, making sure to select the "Centered on Source" option (Figure 12). Keep the "Aperture Half-Height" at its default value of 0.15" and the "Sky sample region" to its default values for start region (0.2") and end region (0.5").

Figure container


Figure title

Figure 12. Strategy tab for WFSS calculation of Emission Line Galaxy

Figure caption

To calculate the SNR for the Emission Line Galaxy, make sure aperture location is specified as centered on this source by clicking the "Centered on source" option and selecting "Emission Line Galaxy" from the pull-down menu.


Click "Calculate." The SNR for this calculation is ~1.9, which is too low. Similar to the direct imaging calculation, use batch expansion to repeat the calculation, increasing only the number of groups. Use a starting value of 11, 15 iterations, and a step size of 1. It is recommended to limit NGroups to 25 with the NIRISS NIS readout pattern to mitigate the impact of cosmic ray hits which can result in discarded frames.


With NGroups ≥ 22, the SNR exceeds ~2.8, which is close to our target of 3. Similar to the experimentation we did to match up parallel NIRCam Imaging exposures with NIRISS WFSS direct imaging exposures in APT, we strike a balance between maximizing NIRCam exposure time within the exposure time window allowed by the prime NIRISS WFSS exposures. We find that for NGroups = 23, we achieve an acceptable NIRISS WFSS SNR while minimizing dead time with a simultaneous NIRCam observation.

Copy the NIRISS WFSS calculation through the F115W filter twice and update the filter to F150W and F200W. Note that when updating the filter, the "Wavelength of Interest" in the "Strategy Tab" (Figure 12) has to be updated by hand, in this case,  to the central wavelength of the filter. The SNR with this exposure set-up (i.e., NGroups = 23, NIntegrations = 1, NExposures = 8) is about 5 and 6 in the F150W and F200W filters, respectively.

See the "Step-by-Step APT Guide" for a walk-through of how to fill out the APT observation template and enter the exposure parameters derived here.

 


Illustrative ETC calculations: complicated source morphology, high-z galaxy, and effects of background aperture and nearby sources on SNR and spectral resolution

The NIRISS WFSS mode will be used to observe fields with multiple sources. Here, we illustrate how source morphology, background aperture region, and nearby sources can affect the SNR and spectral resolution, which are important effects to consider when designing a WFSS observation. We also demonstrate the capabilities of the NIRISS WFSS observing mode to detect a high-z galaxy using the exposure specifications derived above.

Extended source morphology

Create Lensed Galaxy

To mock up a lensed galaxy, which is relevant to the CANUCS program to observe galaxies within lensed clusters, create 3 arc segments that will be assigned to a scene in a lens configuration. Define a source that uses the SED of NGC 3079 as a template, set the redshift to 2, and normalize to 50 nJy at 2 μm. In the "Shape" tab, select "extended", "flat distribution," and set the semi-major axis to 0.1" and the semi-minor axis to 0.005." Keep “Normalization” choice at the default value of “integrated flux" (see Figure 13). Name this source "arc 1" in the "ID" tab of the "Source Editor" pane.

Figure container


Figure title

Figure 13. Defining an arc segment

Figure caption

Top: Define the continuum of the arc segment, using NGC 3079 at z = 2 as an SED template. Middle: Normalize to 50 nJy at 2 μm in the "Renorm" tab. Bottom: Define the shape as extended, with a flat flux distribution, where the semi-major axis is 0.1" and the semi-minor axis is 0.005."


Making sure that the source "arc 1" is highlighted in the "Select a Source" pane, select "Copy Source" twice from the Edit pull-down menu, to create a total of three arc segments. Name the two newly created arc segments "arc 2" and "arc 3."


In the "Select a Scene" pane, click "New" to create a new scene. Then click "Add Source" to add each of the arc segments to this scene. In the "ID" tab of the "Source Editor" pane, name this scene "Lensed Galaxy" (Figure 14).

Figure container


Figure title

Figure 14. Define "Lensed Galaxy" scene

Figure caption

Create a new scene in the "Select a Scene" pane. Highlight each arc source in the "Select a Source" pane and add them to the new scene by clicking "Add Source" in the "Select a Scene" pane. In the "Source Editor" pane, name the scene "Lensed Galaxy."


By defining the offsets of the arc segments relative to the center of the scene in the "Offset" tab in the "Source Editor" pane, we will produce a facsimile of a lensed galaxy. Define the following offsets for the arc segments:


  • arc 1: X offset = 0", Y offset = 0", Orientation = 90°

  • arc 2: X offset = 0.06", Y offset = 0.16", Orientation = 50°

  • arc 3: X offset = 0.06", Y offset = -0.16", Orientation = -50°

After specifying these offsets and orientations, the "Scene Sketch" in the lower left pane should look like Figure 15.

Figure container


Figure title

Figure 15. Lensed Galaxy scene sketch

Figure caption

By specifying offsets and orientations for the arc segments as described in the main text, the scene sketch for the Lensed Galaxy scene should look like this figure.




Calculating SNR for different grism options: effect of dispersion direction on spectral resolution

Main article: NIRISS GR150 Grisms

The NIRISS WFSS mode had two grism choices: GR150R, which disperses the light in the fast readout direction, and GR150C, which disperses the light in the slow readout direction. In ETC, these options are implemented as "GR150 row-dispersed" and "GR150 column-dispersed." Since the lensed galaxy is elongated along the Y-direction, the GR015C grism will disperse the light along the elongated arc, degrading spectral resolution as we will see below.

To initialize a WFSS calculation, select "WFSS" from the NIRISS pull-down menu. Update the "Scene for Calculation" to Lensed Galaxy (Figure 16, top). In the "Backgrounds" tab, enter the coordinates above (04:16:09.40 – 24:04:04.00) and select "Medium" configuration (see Figure 7, bottom). In the "Instrument Setup" tab, keep the default grism option ("GR150 row-dispersed") and update the filter to F200W. Note that the "wavelength of interest" in the "Strategy" tab has to be manually updated to 2 μm.

Retain the default parameters in the "Detector Setup" tab: "FULL" Subarray, "NIS" Readout Pattern, 10 groups per integration, 1 integrations per exposure, and 1 exposure per specification. In the "Strategy" tab (Figure 16, bottom), make sure the option to "Specify offsets in scene" is selected and is set to 0: this option places the extraction aperture at the center of the scene. Retain the default parameters for "Aperture Half-Height" (0.15") and "Sky sample region" (start region = 0.2", end region = 0.5"). Click "Calculate."

Figure container


Figure title

Figure 16. Initialize WFSS calculation for Lensed Galaxy scene

Figure caption

Top: To run ETC WFSS calculations on the lensed galaxy, select the Lensed Galaxy scene in the "Scene for Calculation" pull-down menu in the "Scene" tab. Right: Set extraction aperture parameters in the "Strategy" tab.


In the "Edit" pull-down menu, select "Copy Calculation." In the new calculation, update the grism in the "Instrument Setup" tab to "GR150 column-dispersed."


To compare the spectral resolution for these two calculations, click the checkbox next to both calculations in the "Calculations" pane and inspect the SNR plot in the bottom middle "Plots" pane (Figure 17). Since the dispersion direction for the GR150 column-dispersed grism calculation is along the elongated arc of the lensed galaxy, the resolution of the spectrum is degraded compared with the GR150 row-dispersed grism calculation.

Figure container


Figure title

Figure 17. Effects of grism choice on spectral resolution

Figure caption

NIRISS WFSS ETC calculations of the lensed galaxy using the GR150 column-dispersed grism (blue dashed line) and G150 row-dispersed grism (purple solid line). The GR150 column-dispersed grism calculation disperses the light along the extended arc of the lensed galaxy, resulting in a degraded spectral resolution compared to the GR150 row-dispersed grism calculation, which disperses the light in a direction that does not overlap any portion of the extended source.




Effect of background region on SNR

In the previous calculation, the background is sampled from a region from 0.2" – 0.5." Portions of the lensed galaxy extend from 0.2" – 0.3," and is thus included as background in the calculation. To see how this background over-subtraction affects the results, we perform a calculation where the background is extracted from a source-free region in the scene.

Copy the GR150 row-dispersed grism calculation, and in the "Strategy" tab, update the start region to 0.3" and the end region to 0.6." Click "Calculate." Compare the SNR plot for both calculations (Figure 18): with a larger background sample region that does not include source flux, the SNR is higher. 

Care must be taken when defining the background sample region to exclude emission from an extended source, or nearby sources. Alternatively, the "noiseless sky background" option can be chosen, mitigating contamination concerns in the background region.

Figure container


Figure title

Figure 18. Effects of background region on SNR

Figure caption

NIRISS WFSS ETC calculations of the lensed galaxy using the GR150 row-dispersed grism. When sampling the background region from 0.2" - 0.5" (purple sold line), part of the source is included as "background," over-subtracting source signal. A larger background region (0.3" - 0.6", blue dashed line) samples a source-free region of the scene, increasing the SNR.




High-z galaxy

Main article: JWST ETC User Supplied Spectra

Create high-z galaxy scene

We create a scene with a high-redshift galaxy and a foreground galaxy to estimate the SNR at which we would detect emission lines from the high-z galaxy using the exposure parameters derived in Part 1 of this guide and the effects of a neighboring source in creating spectral confusion.

Create a new source, with a user-supplied spectrum as the SED template. The spectrum for this example, which is of an emission line galaxy at z = 8.76, can be found here. Click on the "Upload Spectra" tab and upload this spectrum (Figure 19, left).

Create a new source in the "Select a Source" pane and name it "high-z galaxy." In the "Continuum" tab, select "Uploaded File." The file imported in the previous step should be visible in the pull-down menu (Figure 19, right).

Figure container


Figure title

Figure 19. Importing a user-supplied spectrum

Figure caption

Left: In the "Upload Spectra" tab, import the user-defined spectrum used in this example. Right: Select the "Uploaded File" option in the "Continuum" tab to use this spectrum as the SED template.


In the "Renorm" tab, normalize the continuum to 25.8 (abmag) in the NIRISS F200W filter. In the "Shape" tab, set the shape to "Extended" with a Sersic profile and normalization choice to "integrated flux." Set both the semi-major and semi-minor axes to 0.065. Keep Sersic index at 1.


Create a new source which will serve as a foreground galaxy in this scene.  In the "Continuum" tab, select extragalactic spectra and choose NGC 4552 as the SED. Set the redshift to z = 0.45. In the "Renorm" tab, normalize the continuum to 22 (abmag) in the NIRISS F200W filter. Similar to the high-z galaxy above, define the source as extended with a Sersic profile, Sersic index of 1, and integrated flux normalization. Set the semi-major axis to 0.3" and semi-minor axis to 0.2."

Define a new scene and add the high-z galaxy and foreground galaxy to this scene. Name the scene "high-z galaxy." Assign the following offsets in this scene:

  • High-z Galaxy: X offset = 0, Y offset = 1.6";

  • Foreground Galaxy: X offset = 0, Y offset = 0, Orientation = -45°.

The scene sketch (bottom left pane) and source spectrum plots (bottom middle pane, after restricting the x-axis from 1 – 2.6 μm) are shown in Figure 20. Note the high-z galaxy has prominent Lyα and CIII] emission lines, observed at 1.19 μm and 1.86 μm, respectively.

Figure container


Figure title

Figure 20. High-z Galaxy scene sketch spectral plots

Figure caption

The z = 8.76 galaxy is the top galaxy in the scene sketch, while the z = 0.45 galaxy is in the middle of the scene. The spectrum of the high-z galaxy (bottom red line) shows prominent Lyα and CIII] emission lines; the spectrum of foreground galaxy is shown by the purple line.




Determine SNR of high-z galaxy emission lines

In this series of calculations, we determine the SNR of the Lyα and CIII] emission lines in the high-redshift galaxy, using the exposure parameters we derived for this observing program.

To begin, select "WFSS" from the NIRISS pull-down menu. In the Scene tab, select the "high-z galaxy" scene. Update the "Background" configuration to match that from previous calculations: set coordinates to 04:16:09.40 – 24:04:04.00 and select "Medium" configuration (see Figure 7, bottom). In the "Instrument Setup" tab, select "GR150 row-dispersed" grism and the F115W filter. 

In the "Detector Setup," specify the same exposure parameters derived above: "FULL" subarray, "NIS" readout pattern, 23 groups per integration, 1 integration per exposure, and 8 exposures per specification (Figure 21, top). In the "Strategy" tab, select "Centered on Source" and make sure the high-z galaxy is selected from the pull-down menu. Keep the aperture half-height (0.15") and background sky sample region parameters (start region = 0.2", end region = 0.5") at their default values. Click Calculate.

Figure container


Figure title

Figure 21. ETC calculation for high-z galaxy scene

Figure caption

Top: Set up the calculation to use the same exposure parameters derived above for the observing proposal. Bottom: In the "Strategy" tab, center the aperture on the high-redshift galaxy and keep default values for the aperture half-height and background sky sample region.


Copy this calculation twice and update the filters to F150W and F200W, and the wavelength of interest in the "Strategy" tab to 1.5 and 2.0 μm, respectively.


Plot the output of this calculation to inspect the predicted SNR of the emission lines (Figure 22).

Figure container


Figure title

Figure 22. ETC calculation for high-z galaxy scene

Figure caption

NIRISS WFSS ETC calculations for the high-z galaxy through the F115W filter (dashed green line), F150W filter (dashed yellow line), and F200W filter (dashed orange line). The SNR of Lyα (1.19 μm) is ~2 and the SNR of CIII] (1.86 μm) is ~1.5.




Effects of nearby sources

In the above calculations, the dispersion direction was along the rows in the ETC scene. In this scene, there is a foreground galaxy below the high-redshift galaxy. Here, we explore the effects of dispersing the spectrum along the columns of the scene.

Copy the calculation above with the F115W filter, update the grism to "GR150 column-dispersed" in the "Instrument Setup" tab, and click Calculate.

Compare the SNR image from the GR150 row-dispersed grism (Figure 23, top) with that from the GR150 column-dispersed grism (Figure 23, bottom). Note that when dispersing along the ETC rows (Figure 23, top), the spectral traces from both sources are distinct, while they are confused when dispersing along the ETC columns (Figure 23, bottom).

 

Figure container


Figure title

Figure 23. 2D SNR images for high-z galaxy for different grism choices

Figure caption

Top: When using the "GR150 row-dispersed" grism, the spectra for the High-z and foreground galaxies are distinct. Bottom: When using the "GR150 column-dispersed" grism, the spectra are confused since the dispersion direction overlaps the foreground galaxy.


The spectral confusion is visible in the 1-D SNR line plot (Figure 24): the spectrum from the GR150 column-dispersed grism is contaminated by the foreground galaxy, which is evident when comparing with the spectrum from the GR150 row-dispersed grism. To mitigate spectral confusion when observing with the WFSS mode, use both the GR150R and GR150C grisms. 

Figure container


Figure title

Figure 24. SNR plot of high-z galaxy calculation using different grisms

Figure caption

NIRISS WFSS ETC calculation for the high-z galaxy using the GR150 row-dispersed grism (green dashed line) and GR150 column-dispersed grism (red dashed line). The GR150 column-dispersed grism disperses the light of the foreground galaxy onto the extraction aperture of the high-z galaxy, leading to spectral confusion. The spectrum, extracted at the position of the high-z galaxy, is dominated by emission from the foreground galaxy in this case. The spectrum from the GR150 row-dispersed grism is not contaminated.




 




Content Block
overflowauto
nameRelated links
id280628021
classpdf-hide

Related links

Instrument 

Near Infrared Imager and Slitless Spectrograph, NIRISS
NIRISS Overview
NIRISS GR150 Grisms
NIRISS Filters

NIRISS Observing Modes 

NIRISS Wide Field Slitless Spectroscopy

NIRISS Operations 

NIRISS Dithers
NIRISS WFSS Dithers

NIRISS Performance

NIRISS Sensitivity

NIRISS Detector 

NIRISS Detector Readout Patterns

Observing Techniques

JWST Slitless Spectroscopy
JWST Parallel Observations

Recommended Observing Strategies

NIRISS WFSS Recommended Strategies

Exposure Time Calculator

JWST Exposure Time Calculator Overview
JWST ETC Defining a New Source
JWST ETC Source Spectral Energy Distributions
JWST ETC Defining a New Scene
JWST ETC Creating a New Calculation
JWST ETC Outputs Overview
JWST ETC Backgrounds
JWST ETC Batch Expansions
JWST ETC User Supplied Spectra


Content Block
overflowauto
nameReferences
id281944791
classpdf-hide

References

JWST technical documents

Restrict Content
groupsconfluence-authors


Panel

Block has been set to pdf-hide. Contact Shireen if you enter references




Content Block
overflowauto
nameIcon
id278719485
classpdf-hide

Multiexcerpt include
MultiExcerptNameJWST observing cookbooks
PageWithExcerptMR:JWST Observing Cookbooks


Content Block
overflowauto
nameUpdates
id1066359141
classpdf-hide


HTML Wrap
padding0
margin0
idupdatesbox


HTML Wrap
tagspan
classupdatesbox-heading

Last updated

Published January 5, 2018


 

Comment

The format for 'Last updated' is shown below. Enter updates above this internal"Comment" box. Only enter major updates (not typos or formatting changes).


Updated April 5, 2017

  • Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam fermentum vestibulum est. Cras rhoncus. 
  • Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Sed quis tortor. 

Published March 2, 2017