the JWST user documentation is under development; current versions are preliminary and subject to revision.

Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Content Layer
id277319515
Content Column
id277319517
Content Block
overflowauto
nameSummary
id277319516

Instructions are available for filling out the APT MIRI MRS templatewhich is used for integral field unit spectroscopy above 5 μm.

Content Block
overflowauto
nameContent
id277805920

Introduction

Medium-resolution spectroscopy is one of 4 observing modes available with the the Mid-Infrared Instrument (MIRI).  The MIRI medium-resolution spectrometer (MRS) will be used to obtain simultaneous spatial and spectral information between 5 and 28.8 μm over a contiguous field of view up to 7.7" x 7.7" in size. The MRS is the only JWST observing mode offering spectroscopy (R = 1500–3500) longward of 12 μm. MRS observations are carried out using a set of 4 integral 4 integral field units (IFUs), each of which covers a different portion of the MIRI wavelength range. The MRS IFUs use slicers to split the field of view into spatial slices. Each slice produces a separate dispersed "long-slit" spectrum. Post-processing produces a 3-dimensional (2 spatial and one spectral dimension) data cube. 

MRS operations have been designed to allow for efficient observations of point sources, compact sources, and extended sources.  The observer will have control over 3 primary variables for MRS spectroscopy:
1) wavelength coverage 
2) 
dithering pattern 
3) 
detector readout mode and exposure time (via the number of frames and integrations)

Allowed values are documented and maintained in the MIRI MRS template parameters, but described below.



Step-by-Step APT Instructions

Multiexcerpt include
MultiExcerptNamegeneric
PageWithExcerptMIRI Imaging Template APT Guide

Target Acquisition Parameters

This field specifies the ACQ TARGETACQ FILTER, and ACQ EXPOSURE TIME.

Anchor
TargetACQ
TargetACQ

Target ACQ 

For MRS spectroscopy, choose ACQ TARGET from the pull down menu.  FILTERS available include: F560WF1000WF1500W, and FND.  

Anchor
AcqExposureTime
AcqExposureTime

ACQ Exposure Time 

A Target ACQ must be completed by selecting MULTIACCUM exposure a MULTIACCUM exposure configuration. Each exposure is configured by setting the readout pattern and characteristics parameters: READOUT PATTERN and NUMBER OF GROUPS

Info
iconfalse

Users should use the Exposure Time Calculator (ETC) to determine the best exposure configuration to optimize the signal-to-noise.


ACQ READOUT PATTERN

  1. FAST (default)
  2. SLOW
  3. FASTGRPAVG 

NUMBER OF GROUPS AND INTEGRATIONS

The MIRI readout timing pattern in the ACQ exposure is defined by only one of the MULTIACCUM parameters: 

  1. ACQ NUMBER OF GROUPS: the number of groups during an integration, where a group is the product of cycling through all the pixels

ACQ NUMBER OF INTEGRATIONS and ACQ PHOTON COLLECTION DURATION are not user changeable.

MRS Parameters

Anchor
PrimChannel
PrimChannel

Primary Channel 

The PRIMARY CHANNEL defines the pointing origin (i.e., where the science target would be centered in the absence of dithering) and field boundaries (for mosaic overlap calculations).  Options include:

  1. ALL*
  2. CH1 
  3. CH2 
  4. CH3
  5. CH4 

*The default choice should be ALL, unless the science case wishes to prioritize longer-wavelength observations at the possible expense of the target not being in the short-wavelength field of view.

Anchor
Dithers
Dithers

Dithers 

The DITHERS dialog box handles the creation of dither patterns, which must be created before defining your exposure sequence.  Each DITHER is specified by setting several parameters: DITHER TYPEOPTIMIZED FOR, and DIRECTION.

DITHER TYPE

  1. 2-POINT dithering allows for basic image separation in order to use one exposure as the ‘background image’ for another, and to detect the source with redundant detector pixels.  It achieves optimal half-integer spatial sampling throughout much of the field of view.
  2. 4-POINT dithering achieves optimal half-integer spatial sampling throughout the entire field of view of all 4 channels.

The default choice should be 4-POINT unless spatial image quality is not a priority to the science case. Note that all MIRI MRS data must be obtained with one of these dither patterns above.  The ability to turn off dithering and obtain zero-offset exposures is presently restricted to limited-access engineering and commissioning use. 

OPTIMIZED FOR

  1. Either the Primary Channel chosen above
  2. EXTENDED

The PRIMARY CHANNEL dithering schemes provide the maximum possible separation between the dither locations.  The EXTENDED dithering scheme provides the minimum possible separation that still achieves ideal spatial sampling and use of redundant detector locations. When observing point sources or otherwise small objects, the PRIMARY CHANNEL dithering scheme should generally be selected.  When observing extended sources that fill much of the field of view, or when mosaicing together multiple pointings, some science cases may wish to use the EXTENDED scheme. Note that the EXTENDED pattern should not be used unless there is a separate dedicated background exposure at an off-source location since the image separation achieve in this dither scheme will be insufficient to achieve proper background subtraction.

DIRECTION

  1. POSITIVE
  2. NEGATIVE

This choice defines the orientation of the dither offsets in the JWST focal plane; they are mirror symmetric with respect to the IFU slice orientation and achieve identical sampling. This option is provided to allow for flexibility in dithering direction if the telescope ORIENT is to be fixed for a given observation. The default is NEGATIVE, and is unimportant for the majority of science cases.

Science Exposures 

Anchor
SimultImaging
SimultImaging

SIMULTANEOUS IMAGING 

MIRI offers the ability to obtain simultaneous imaging with the MIRI imager while obtaining MRS spectroscopy.  Choose:

  1. YES
  2. NO

Anchor
ImSubarray
ImSubarray

IMAGER SUBARRAY 

If you choose simultaneous imaging, MIRI imaging supports the use of a pre-defined set of SUBARRAYS for observing targets bright enough to saturate the image in full-frame readout. Each subarray is a associated with a brightness limit, depending on the filter used, above which a point source will saturate in the shortest 2-group integration.  A MIRI imaging observation can only support a single subarray. If the target must be imaged using another subarray, it is necessary to create another MIRI imaging observation.

Excerpt Include
JTI:MIRI Imaging
JTI:MIRI Imaging
nopaneltrue

Anchor
Wavelength
Wavelength

WAVELENGTH 

Each MRS channel has three different spectral settings:

  1. SHORT (A)
  2. MEDIUM (B)
  3. LONG (C)
  4. ALL generates an exposure for each of SHORT, MEDIUM, and LONG, all with the same readout parameters.

Anchor
ExpParameters
ExpParameters

Exposure Parameters 

Info
iconfalse

Users should use the Exposure Time Calculator (ETC) to determine the best exposure configuration to optimize the signal-to-noise.

A MRS sequence must be completed by selecting MULTIACCUM exposure a MULTIACCUM exposure configuration for each detector being used (in the EXPOSURE PARAMETERS dialog box). Each exposure is configured by setting the readout pattern and characteristics parameters: READOUT PATTERNNUMBER OF GROUPS, and NUMBER OF INTEGRATIONS.  If you choose simultaneous imaging, you must select an imaging FILTER for each MRS sequence.  Each MRS sequence can support only a single imaging FILTER.  Finally select a dither pattern from the list of DITHERS already defined for the observation. The pattern will be repeated at each dither position following an offset of the telescope to the new position. The number of exposures at each dither position is set by NO. OF EXPOSURES, but this input must be the same for all detectors.  

READOUT PATTERN

MIRI offers two readout modes: 

  1. Fast (default for imaging detector)
  2. Slow (default for MRS detectors)

NUMBER OF GROUPS AND INTEGRATIONS

The MIRI timing pattern per exposure is defined by only two MULTIACCUM parameters: 

  1. NUMBER OF GROUPS: the number of groups during an integration, where a group is the product of cycling through all the pixels
  2. NUMBER OF INTEGRATIONSthe number of integrations during an exposure, where integration is defined as the time between resets. 

Other Tabs

Mosaic Properties

The MIRI MRS may be used to obtain data for a region larger than their size by creating a MIRI MRS mosaic pattern.

Special Requirements

A variety of observatory level special requirements may be chosen.

Comments

The comments field should be used only to record observing notes.

 


 

Content Block
overflowauto
nameRelated links
id280628021

Related links

Creating a MIRI Observing Program in APT
JWST APT Observations
JWST APT Observation Templates
JWST Astronomers Proposal Tool Overview
JWST Mosaic Observation Capability
JWST Observation Planning Documentation - OLD
JWST Proposing Tools
MIRI Medium-Resolution Spectroscopy
MIRI Detector Readout Overview
MIRI Detector Readout Fast
MIRI Detector Readout Slow
MIRI Filters and Dispersers
MIRI MRS Dithering
MIRI Overview
MIRI Sensitivity
MIRI Target Acquisition Overview

Content Block
overflowauto
nameReferences
id281944791

References

Reference papers and reports.

Content Column
id277319512
Content Block
margin0
overflowauto
nameIcon
id277319513

Multiexcerpt include
MultiExcerptNameAPT icon and name
PageWithExcerptMR:APT icon and name

Content Block
overflowauto
nameUpdates
id1066359141
HTML Wrap
padding0
margin0
idupdatesbox
HTML Wrap
tagspan
classupdatesbox-heading

Last updated

Published May 1, 2017


 

Comment

The format for 'Last updated' is shown below. Enter updates above this internal"Comment" box. Only enter major updates (not typos or formatting changes).


Updated April 5, 2017

  • Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam fermentum vestibulum est. Cras rhoncus. 
  • Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Sed quis tortor. 

Published March 2, 2017


Restrict Content
groupsconfluence-authors

Tables are only visible to JDox content providers

"Updated" refers to the updated or publish dates for the public pages.

Page properties
idcomments
UpdatedMay 1, 2017
Open commentsYes
TeamAPT MIRI
AuthorHagan, Fox
Page properties
idlayout
UpdatedMay 1, 2017
Fix pageYes
TypeMissing links
Teameditors