Moving Target Instrument Specific Considerations
The different JWST instruments and modes have specific capabilities, constraints, and drawbacks for observing moving targets.
On this page
The diversity of JWST observing modes present many opportunities for new and innovative solar system science. However, there are also special considerations and drawbacks to particular modes. Below are a list of the JWST instruments and features that the proposer should keep in mind when developing observing programs. This list is not exhaustive.
MIRI
Main articles: MIRI Imaging, MIRI Low Resolution Spectroscopy, MIRI Medium Resolution Spectroscopy
- The Mid-Infrared Instrument (MIRI) can be operated in 4 different observing modes: (1) imaging, (2) low-resolution spectroscopy, (3) medium-resolution spectroscopy, and (4) coronagraphy.
- The primary MIRI modes for solar system observations are imaging, low resolution spectroscopy with the LRS, and medium resolution spectroscopy with the MRS. Both the LRS and MRS require targets with well-constrained orbital solutions for accurate placement in the science aperture. The LRS requires that the target be kept centered in the slit as accurately as possible because even small deviations will result in inaccurate wavelength solutions. Placing the source offset from the center of the slit could result in shifted wavelength solutions (Kendrew et al., 2015). Target acquisition (TA) is therefore recommended for placing point sources on the LRS slit. The LRS in slitless mode does not support dithering.
- The FWHM of the MRS PSF roughly corresponds to the slice width, which varies with wavelength. The PSF FWHM is ~0.176" at the shortest wavelengths and expands to ~0.645" at the longest wavelengths (Wells et al., 2015). Pluto and Charon (maximum angular separation of ~0.8"), for instance, will be easily separable at the shorter wavelengths, but will possibly be blended at the longer wavelengths. As another example, spatial resolution on Titan will significantly degrade with increasing wavelength.
- The MIRI coronagraphs are 4-quadrant phase masks (4QPMs), meaning they do not have Lyot stops and can provide much smaller inner working angles (IWAs) (Boccaletti et al., 2015). A possible application of this mode is the detection of satellites around minor bodies in the solar system (primarily asteroids and KBOs). A drawback is the need to place the target exactly on the center of the phase mask, which may be more difficult for moving targets. Additionally, it is unlikely that observations of extended objects with the 4PQMs will yield useful results.
NIRCam
Main articles: NIRCam Imaging, NIRCam Coronagraphic Imaging
- The Near Infrared Camera (NIRCam) can be operated in 5 different observing modes: (1) imaging, (2) coronagraphic imaging, (3) wide field slitless spectroscopy, (4) time-series imaging, and (5) grism time series.
- The primary NIRCam mode for solar system observations is imaging with one module. The same field of view can be observed through 2 different channels (short wavelength: 0.6–2.3 µm; long wavelength: 2.4–5.0 µm) simultaneously. NIRCam has 2 modules providing 2 separate fields of view, but it is suggested that only one module could be used if observing one specific target because almost all targets, including comets, can be observed using one module. The RAPID* readout mode will not result in data volume issues when using only one module. Surveys would benefit from use of both modules combined with NIRISS imaging in parallel. Brightness limits can be found in the NIRCam imaging article.
- NIRCam time-series imaging provides a maximum frame rate of ~20 Hz in conjunction with the smallest subarray (64 × 64 pixels, or 2.0″ × 2.0″). A possible application is for observing stellar occultations and mutual events. Brightness limits for this mode can be found in the NIRCam imaging article. The NIRCam coronagraphs (using traditional Lyot stops) provide IWAs of 0.4″, 0.63″, and 0.81″ (in radius) at wavelengths of 2.1, 3.35, and 4.1 µm, respectively. Possible application of the coronagraphs to Solar System science are the study of Centaurs and distant comet comae, observations of the satellites and rings of Uranus and Neptune, and the discovery of faint, widely separated satellites of the largest Kuiper Belt objects.
* Bold italics style indicates words that are also parameters or buttons in software tools like the APT and ETC. Similarly, a bold style represents menu items and panels.
NIRISS
Main article: NIRISS Aperture Masking Interferometry
- The Near Infrared Imager and Slitless Spectrograph (NIRISS) can be operated in 4 different observing modes: (1) imaging, (2) single object slitless spectroscopy (SOSS), (3) wide field slitless spectroscopy (WFSS), and (4) aperture masking interferometry (AMI).
- Of NIRISS's modes, AMI may present the most unique opportunities for solar system observers. AMI uses a 7-hole aperture mask with 21 unique baselines to provide high spatial resolution imaging of up to 75″, with a contrast sensitivity of ~10 mag at 4.6 µm. Keep in mind that the 7 holes in the aperture mask correspond to 7 mirror segments; this means that light from 11 mirror segments is blocked, resulting in throughput of only ~15%. Faint objects, such as KBO binaries, are therefore not ideal AMI targets. However, AMI's performance observing Io's volcanoes and binary asteroids has been extensively investigated. When observable by JWST, Io's diameter will, on average, cover 16 pixels on NIRISS, with a plate scale of ~65 mas/pixel. Simulations of AMI images of active Io eruptions show it is possible to measure emission from individual events and to resolve bright events separated by only 88 mas; see Thatte et al. (2015) and Keszthelyi et al. (2016). The accepted Solar System ERS proposal (program 1373) makes use of the AMI mode for observations of volcanos on Io, and its APT file is now available to download in APT. Binary asteroids with separations under 75 mas and contrasts less than 10 mag, such as Ida/Dactyl (70 mas and 6.7 mag, respectively), will be resolvable using AMI (Rivkin et al., 2016).
- Compared to NIRCam, NIRISS has a lower pixel scale and higher sensitivity to extended emission <2.5 µm (Norwood et al., 2016). The pixel scales of the 2 instruments are comparable at wavelengths >2.5 µm. The imaging mode contains similar filters (0.9–5 µm) to NIRCam two channel imaging, and in effect NIRISS imaging becomes a "third channel" when operated in parallel. Note that it is not possible to select NIRISS imaging as a primary mode, so to encourage proposers to take advantage of NIRCam's ability to image simultaneously through two filters. The single object (SOSS) and wide field (WFSS) slitless spectroscopy modes, provided by grisms GR150C, GR150R, and GR700XD, may not be the most optimal modes for Solar System observers; however, such programs are not without precedence. For instance, the G141 grism on Hubble's WFC3 has been used to observe the Pluto system (HST program 13667, PI M. Buie).
NIRSpec
Main articles: NIRSpec IFU Spectroscopy, NIRSpec Fixed Slits Spectroscopy
- The Near Infrared Spectrograph (NIRSpec) can be operated in 4 different observing modes: (1) multi-object spectroscopy (MOS), (2) integral field unit (IFU) spectroscopy, (3) fixed slits spectroscopy, and (4) bright object time-series (BOTS) spectroscopy.
- The primary NIRSpec modes for Solar System observations are IFU, fixed slits spectroscopy, and MOS configured into a long slit. The fixed slits have no covers and are always open; the ALLSLITS subarray can be used to simultaneously record spectra through all the slits, if desired. Both modes require targets with well-constrained orbital solutions for accurate placement in the science aperture. Any observations with the 0.2" fixed slit, and likely the 0.4" fixed slit, will require target acquisition (TA). Wide aperture target acquisition (WATA) for moving targets will use the S1600A1 fixed slit, so the uncertainties on the ephemeris must be small enough to first place the object in a 1.6" × 1.6" box.
- Multi-object spectroscopy (MOS) with the micro-shutter assembly (MSA) is available for moving target observations with a "pseudo long slit." These custom long slits are available in quadrant 4 (Q4) of the MSA and may be ideal for observations of comets, Mars, and the giant planets. Scanning of the entire disks of Mars and giant planets can be made by allowing the object to rotate and leaving the long slit fixed in the MSA. Scanning across the disk of Mars and the giant planets in a shorter period of time, or scanning across a comet, can be specified in the NIRSpec MOS template starting in APT 28.0. It should be noted that the proposed investigation in Norwood et al. (2016) to observe the Uranian satellites with the MSA is not feasible at this time.
References
Boccaletti, A., et al. 2015, PASP, 127, 633
The Mid-Infrared Instrument for the James Webb Space Telescope, V: Predicted Performance of the MIRI Coronagraphs
PDF, Univ. of Arizona
Buie, M. et al. HST program 13667
Observations of the Pluto System During the New Horizons Encounter Epoch
Kendrew, S., et al. 2015, PASP, 127, 623
The Mid-Infrared Instrument for the James Webb Space Telescope, IV: The Low-Resolution Spectrometer
PDF, Univ. of Arizona
Keszthelyi, L., et al. 2016, PASP, 128, 959
Observing Outer Planet Satellites (Except Titan) with the James Webb Space Telescope: Science Justification and Observational Requirements
arXiv
Norwood, J., et al. 2016, PASP 128, 960
Solar System Observations with the James Webb Space Telescope
arXiv
Rivkin, A. S., et al. 2016, PASP, 128, 959
Asteroids and the James Webb Space Telescope
Thatte, D., Sivaramakrishnan, A., Stansberry, J. 2015, STScI Newsletter, Volume 32, issue 02 (PDF)
Vulcanism on Io with Aperture Masking Interferometry on Webb's NIRISS
Wells, M., et al. 2015, PASP, 127, 646
The Mid-Infrared Instrument for the James Webb Space Telescope, VI: The Medium Resolution Spectrometer
PDF, Univ. of Arizona