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Impact on the Signal-to-Noise Ratio due to Stochastic Release
of Multiple Electrons in the NIRSpec Detectors at Short Wavelengths
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Abstract: A simple statistical model is constructed for the additional noise added to the extracted
detector electron signal due to the quantum yield effect - i.e. the NIRSpec detectors generating multiple
electron-hole pairs per sufficiently energetic incoming photons in a stochastic manner. The model is used
to demonstrate that while the degradation of the signal-to-noise ratio due to the effect is modest (≤ 6%)
over the wavelength range of NIRSpec, not taking the effect properly into account in signal-to-noise
calculations or error propagation estimation, can lead to the signal-to-noise ratio being over-estimated
by as much as '26%. The model is also used to generalize the conventional expression for the variance
of the signal extracted through up-the-ramp sampling to also include the quantum yield effect.

Introduction and Background

The ' 5 µm long wavelength cut-off Teledyne HgCdTe detectors employed in NIRSpec (as well as
NIRISS/FGS and the long wavelength channel of NIRCam) are know to occasionally generate more
than a single electron-hole pair for incident photons having energies sufficiently above the band gap of
the device. The additional statistical noise added to the Poisson noise of the incoming photon signal by
this random process is referred to as Fano noise. The purpose of this note is to model and quantify this
additional noise source in order that it can be properly included in NIRSpec signal-to-noise calculations
at the shorter wavelengths, and eventually be incorporated in the error propagation algorithms of the
NIRSpec data reduction pipeline.

The multiple electron generation effect is customarily quantified by the so-called quantum yield, Φ(E),
denoting the average number of electrons released per detected photon as a function of energy. In
this picture one distinguishes between the photonic quantum efficiency of the detector, QE(E) and
its responsive quantum efficiency RQE(E), such that RQE(E) = Φ(E)QE(E) with Φ(E) ≥ 1 at all
photon energies.

The quantum yield of the two NIRSpec flight detectors has been characterized by the NASA GSFC
Detector Characterization Laboratory. As shown in Figure 1 taken from reference [1], Φ(E) is cus-
tomarily described as equalling unity for photon energies below some threshold energy Et, after which
Φ(E) increases linearly with increasing photon energy.

If instead expressed in terms of the photon wavelength, Φ(λ) can be parameterized as

Φ(λ) = max

[
1, 1 + hcβ(

1

λ
− α

λc
)

]
(1)

where α = 2.6562 and β = 0.4708 eV−1 are empirically determined constants, and λc is the red
cutoff wavelength of the detector response [1,2]. The NIRSpec SCA491 array has a measured cutoff
at λc ' 5.45 µm and the SCA492 array at λc ' 5.37 µm. In the following we for simplicity assume
λc = 5.40 µm for both devices.

The shortest wavelength covered by NIRSpec is λ ' 0.6 µm, for which Eq. (1) predicts Φ(0.6µm) = 1.69.
That this number lies well below 2 suggests that no more than one additional electron is released over
the photon energy range relevant to NIRSpec. With this assumption the quantum yield process can be
readily modeled statistically.

The simple statistical model

Consider a single detector pixel illuminated by photons of a fixed wavelength λ. Let nγ denote the
number of photons detected during an integration, and let ne denote the corresponding number of
electrons generated and read out from the pixel.
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noise. For both detector characterization and scientific observa-
tions, it is therefore important to know when the quantum yield
exceeds unity and account for it.7

To infer ΦðλÞ, we asked Teledyne to provide their theoretical
AR coating model for our SCAs, T ðλÞ. This took the form of a
table that gave the predicted transmission as a function of wave-
length from 400–6000 nm at 5 nm intervals. Teledyne also
provided AR coating witness samples for each SCA, but we
found that the theoretical AR coating always gave lower chi-
square when fitted to our data. To infer ΦðλÞ, we fitted T ðλÞ
to the RQE data from all eight 5 μm cutoff NIRSpec H2RGs.

Our RQE model was,

RQEðλÞ ¼ ηT ðκλÞΦðλÞ; (2)

where

ΦðλÞ ¼ max½1; 1þ βhcq&1
e ðλ&1 & αλ&1

co Þ': (3)

Equation (3) is based on the work of Shockley (1961), and
in particular it approximates the behavior shown in his
Figures 3–4 to first order in Eγ . One could include higher or-
der terms once the quantum yield turns on. For this study, how-
ever, we opted to use the simplest possible linear model. In
equations (2)–(3), α is the threshold energy as a fraction of
the bandgap energy Eg, β is the slope of the quantum yield
after it turns on in units of eV&1, η is the “internal QE”,
and κ is a wavelength scale factor. κ is needed as a free pa-
rameter because Teledyne’s anti-reflection coating model is for
a different temperature than NIRSpec’s T ∼ 40 K SCA operat-
ing temperature and we expect the AR coating transmission
function to shift in wavelength with temperature. Although
we refer to η as “internal QE”, one should bear in mind that

any spectrally featureless reduction in the QE (e.g., an imper-
fect AR coating) would be accounted for by η. Substituting
equation (3) into equation (2), we arrive at the four-parameter
expression that we fitted to the data,

RQEðλÞ ¼ ηT ðκλÞmax½1; βhcq&1
e ðλ&1 & αλ&1

co Þ': (4)

The fits were simple four-parameter least squares fits. The
mean values across all eight SCAs for the fitted parameters
are; α ¼ 2:65( :2, β ¼ 0:460( :06 eV&1, η ¼ 0:952( :03,
and κ ¼ 0:930( :02. Figure 6 shows the fits for the two flight
SCAs, and Table 2 shows the fit parameters for every SCA.
Figure 7 shows our quantum yield results in the context of
the work of McCullough et al. (2008) and results for a few other
semiconductors from the literature.

TABLE 2

RESULTS OF FOUR-PARAMETER FITTING

SCA rms of fit Internal QE (η) Wavelength scaling (κ) Threshold energy (α) Slope parameter [βðeV&1Þ]

SCA17163 . . . . . 0.0226 0.9689 0.9196 2.9048 0.4124
SCA17166 . . . . . 0.0178 0.9587 0.9065 2.5869 0.5489
SCA17167 . . . . . 0.0203 0.9597 0.9438 2.9154 0.4358
SCA17168 . . . . . 0.0101 0.8785 0.9302 2.5832 0.4664
SCA17169 . . . . . 0.0158 0.9346 0.9021 2.6737 0.4969
SCA17195 . . . . . 0.0272 0.9600 0.9388 2.4592 0.4281
SCA17280 . . . . . 0.0279 0.9612 0.9230 2.2680 0.3829
SCA17378 . . . . . 0.0255 0.9940 0.9761 2.8280 0.5110
Mean . . . . . . . . . . 0.0209 0.9519 0.9300 2.6524 0.4603
s.d. . . . . . . . . . . . . . 0.0062 0.0338 0.0236 0.2263 0.0557

Si

Ge

0.0 0.5 1.0
0.8

1.0

1.2

1.4

1.6

1.8

2.0

E Et eV

Q
ua

nt
um

Y
ie

ld

FIG. 7.—This plot shows (solid blue) the quantum yield that we infer and
(dashed purple) the quantum yield from McCullough et al. (2008). To provide
context, we overlay data for Si and Ge from Shockley (1961) and references
therein. For the range of photon energies over which both studies claim validity,
our results agree with McCullough et al. to within 2%. For photon energies
E & Et > 0:7 eV, the results reported here do not diverge greatly from the type
of behavior exhibited by Si and Ge. As discussed in the text, one could probably
use a higher-order model to allow for some curvature in the quantum yield curve
if desired. See the online edition of the PASP for a color version of this figure.

7As part of characterizing the full NIRSpec detector subsystem, we will mea-
sure the Fano noise of these detectors. Our expectation is that the Fano noise will
be small, except possibly near the shortest NIRSpec wavelength of 600 nm.
However, until those measurements are available, we refer the interested reader
to Sec. 8 of McCullough et al. (2008) for more information on Fano noise.
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Figure 1: Measured quantum yield Φ(E) as a function of photon energy for the NIRSpec detectors
according to [1]

Let m denote the number of electrons generated for a given incoming photon and p denote the prob-
ability that m = 2 electrons are released. The probability that m = 1 electron is released is then
1− p.
The mean of m is

E(m) = 2× p+ 1× (1− p) = 1 + p (2)

and its second moment

E(m2) = 4× p+ 1× (1− p) = 1 + 3p (3)

The total number of incoming photons nγ is Poisson distributed. Therefore

E(nγ) = Var(nγ) (4)

In this notation the total number of electrons in the accumulated signal ne results as a random sum of
nγ trials of m

ne =

nγ∑
i=1

mi (5)

where both nγ and mi are stochastic variables. The mean and variance of such a compounded distri-
bution are given by the general expressions

E(ne) = E(nγ)E(m) = E(nγ)(1 + p) (6)

Var(ne) = E(nγ)Var(m) + E(m)2Var(nγ) = E(nγ)E(m2) = E(nγ)(1 + 3p) (7)

where the second-to-last simplification in eq. (7) exploits the defining property (4) valid for a compound
Poisson distribution. It follows from eqs. (6) and (7) that when p > 0, the additional randomly generated
extra electrons lead to ne no longer being Poisson distributed (i.e. Var(ne) 6= E(ne)).
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Figure 2: Probability that an incoming photon will generate two electron-hole pairs as a function
of wavelength inferred from references [1] and [2].

Comparing eq. (2) to the conventional notation of the previous section, it is evident that we can
equate Φ(λ) with 1 + p(λ). The empirical parameterization of eq. (1) can therefore in our model be
re-formulated as

p(λ) =

{
0.5838( 1

λ[µm] −
1

2.033 ) for 0.60µm ≤ λ < 2.033µm

0 for 2.033µm ≤ λ ≤ 5.40µm
(8)

valid over the 0.60µm ≤ λ < 5.40µm operational range of NIRSpec.

As shown in Figure 2, the maximum value of p = 0.69 is reached at the blue-most edge of the NIRSpec
coverage at λ = 0.60 µm. Note that since the above model by construction does not allow more than
two electrons to be released per incoming photon, the quantum yield process becomes non-stochastic
with p(λ) ≡ 1 for wavelengths λ ≤ 0.454 µm. In this extreme limit the multiple electron generation
is modeled as a simple scaling of nγ by a constant factor of 2. This is clearly not realistic since the
stochastic creation of triple electron-hole pairs will presumably begin to appear at sufficiently energetic
wavelengths. This unrealistic asymptotic behavior notwithstanding, the adopted model can still be
assumed to be a reasonable description at the wavelengths relevant for NIRSpec at which p ≤ 0.69.

The NIRSpec radiometric reduction scheme has the extra (1 + p(λ)) factor in eq. (6) implicitly in-
cluded in the photon conversion efficiency (PCE) curve. The extra electrons generated at the shorter
wavelengths will therefore automatically be taken into account when converting the detected electron
signal n̂e into an incoming physical light flux. However, in this approach the extra noise from the
additional generated electrons carried by the extracted signal needs to be explicitly considered in the
error propagation calculation used to infer the statistical noise on n̂e.

In the case of an ideal noiseless and background-free detector that always releases a single electron
for each incoming photon, the statistical fluctuations in the observed electron signal n̂e in a raw un-
resampled pixel are solely caused by the the photon noise. The variance of n̂e is therefore in this case
estimated per eq. (4) in the conventional manner as

VarC(n̂e) ' n̂e (9)

that is, by the value of the measured electron signal itself.

With the additional electron releases, this estimator will in the mean display a variance per eq. (6)

E(VarC(n̂e)) = E(ne) = E(nγ)(1 + p) (10)
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But from eq. (7) we know that the true variance of ne is

VarT (n̂e) = E(nγ)(1 + 3p) (11)

Combining eqs. (10) and (11), it follows that the relationship between the true statistical noise on ne
and that calculated in the conventional manner ignoring the quantum yield effect is

VarT (ne) ' VarC(n̂e)(
1 + 3p

1 + p
) = n̂e(

1 + 3p

1 + p
) (12)

The correction factor (1 + 3p)/(1 + p) takes on the value of unity at wavelengths λ ≥ 2.033 µm
and steadily rises with decreasing wavelength to 1.81 at λ = 0.60 µm. In other words, ignoring the
additional noise from the extra released electrons and incorrectly calculating the variance of the signal
as if it stemmed from a pure Poisson process, leads to the actual error on the extracted signal being
systematically underestimated by a factor of up to

√
1.81 = 1.35, and the signal-to-noise ratio therefore

being overestimated by up to ' 26%, at the shortest wavelengths accessible with NIRSpec.

Eqs. (6) and (7) give for the true signal-to-noise ratio of the net signal ne including the quantum yield

(
S

N
)T =

√
nγ

1 + p√
1 + 3p

(13)

For constant nγ (i.e. constant assumed QE) the maximum degradation factor w.r.t. the underlying
photon statistics occurs for p(λ) = 1

3 where it reaches 2
√

2/3 = 0.9428. Per the parameterization of
eq. (8), this occurs at a wavelength of λ = 0.941µm. It follows that for a given fixed number of photons,
the additional electrons released by the finite quantum yield will in the present model degrade the total
signal-to-noise ratio relative to the pure photon (p = 0) case by ≤ 6%.

However, this is not the situation we are normally faced with. In practice we are given the measured
electron signal n̂e, and need to appeal to external knowledge of the wavelength of the incoming photons
λ and the corresponding value of p(λ) to partition n̂e between the incident photons and the extraneous
generated electrons to correctly assess the true statistical noise on n̂e. This corresponds to the situation
where n̂e and RQE are known, and the inferred value of nγ implicitly decreases with the assumed value
of p as nγ = n̂e/(1 + p). In this case eq. (13) becomes

(
S

N
)T '

√
n̂e

√
1 + p

1 + 3p
(14)

In this situation the signal-to-noise reduction factor w.r.t. the pure photon (p = 0) case decreases with
increasing p, dropping to a factor of 0.74 for p(0.60 µm) = 0.69 in accord with eq. (12). Note that
the dominant error made when ignoring the quantum yield effect in estimating the statistical noise
on n̂e is not so much ignoring the additional source of noise caused by the extra electrons themselves,
but over-estimating the number of detected photons as nγ ' n̂e when in reality only nγ ' n̂e/(1 + p)
photons are detected.

This simple analysis serves to show that while the wavelength-dependent quantum yield effect in itself
only leads to a modest (≤ 6%) degradation in the net signal-to-noise, the mistake of not taking the effect
properly into account by reducing the data as if the detected electron signal were Poisson distributed,
results in the inferred signal-to-noise ratio being overestimated by as much as ' 26% at the shortest
NIRSpec wavelengths.

Application to up-the-ramp sampling

The key finding of our simple model is that whenever the quantum yield effect is in play, the photon-
generated electron signal ne ceases to be Poisson distributed, but instead displays a variance given by
eq. (12).
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The real-life NIRSpec detectors, however, also display significant read-out noise which further adds to
the variance of ne. Moreover, the accumulated electron signal is extracted by means of a complicated
up-the-ramp slope-fitting processing algorithm designed to average down the read noise. The canonical
expression for the variance of the accumulated electron signal extracted from up-the-ramp processing
is given in [3] and [4]. The observation that the lengthy derivation of this expression nowhere makes
use of the fact that the variance of the photon signal is Poissonian, suggests that it can be readily
generalized to include the quantum yield effect simply by substituting the variance (12) for that of the
photon noise. This results in

Var(ne) =
12(n− 1)

mn(n+ 1)
σ2
read + (

6(n2 + 1)

5n(n+ 1)
− 2(m2 − 1)

n(n+ 1)m2
)(

1 + 3p

1 + p
)ne (15)

with

ne = (n− 1)mtff (16)

Here n is the number of groups of m averaged reads that the exposure extends over, tf is the array
frame time, f the signal electron rate (slope - including the quantum yield), and σ2

read is the read noise
per read.

Figure 3: Detailed pixel-level Monte Carlo simulation of a (n = 14, m = 5) sub-exposure of the
reference continuum source reference signal-to-noise calculation described in [5], expanded to also
include the quantum yield. The squares show the outcome of the simulations for each assumed
value of p. The continuous curve shows the signal-to-noise ratio calculated per eqs. (15) and (16).
The excellent agreement holds up for any assumed value of the input source brightness.

Eqs.(15) and (16) were verified numerically by means of detailed pixel-level Monte Carlo simulations of
the up-the-ramp signal accumulation and extraction process. Figure 3 shows the result of expanding the
already existing detailed simulation of one sub-exposure of the 3µm continuum source reference signal-
to-noise calculation presented in [5] to also simulate the quantum yield for different assumed values of
p, while holding RQE constant. Although multiple electrons are strictly speaking not generated at a
wavelength of 3µm, this is immaterial for the purpose of verifying eq. (15). This particular simulation
was merely chosen for convenience as a representative example involving significant sky background
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and detector noise. It is seen that the agreement between the simulations (squares) and the predicted
signal-to-noise ratio calculated from eqs.(15) and (16) (full curves) is excellent for all assumed values of
p. This also holds if the source input flux is increased or decreased by a factor of ten from its nominal
value.

As expected from eq. (15), the inclusion of the read-noise dilutes the net reduction in signal-to-noise
w.r.t to the p = 0 case caused by the quantum yield slightly for a given value of p compared to the
ideal detector case of eq. (14). At the largest value of p = 0.69 relevant for NIRSpec, the signal-to-noise
reduction factor inferred from the simulation is 0.79 compared to 0.74 calculated from eq. (14). The
latter value is approached if the source brightness in the simulation in increased, thereby making the
photon-induced signal more dominant w.r.t. to the detector noise. Conversely, decreasing the assumed
source brightness causes the reduction factor to slowly increase.

It follows that eq. (14) captures the worst-case error made in the calculated signal-to-noise made when
overlooking the quantum yield effect, also in the presence of significant read-noise and when up-the-
ramp sampling is employed.

Conclusions

Armed with the parameterization of p(λ) given by eq. (8) (or some other preferred alternate version
thereof) and the generalized expression eq. (15) for the variance of the up-the-ramp extracted ac-
cumulated electron signal including the quantum yield, it is straightforward to refine any NIRSpec
signal-to-noise calculation, following the recipe described in [5], to correctly account for the multiple
electron events occurring at the affected shorter wavelengths.

Taking the effect into account in the error propagation calculation during the reduction of a given
NIRSpec exposure is slightly more tricky. It should ideally be done at the individual raw (i.e. un-
resampled) pixel level, employing the NIRSpec instrument model to first work out the wavelength
of the light illuminating each pixel (assuming no spectral overlap), and then using eq. (15) with the
appropriate value of p(λ) obtained from eq. (8), and the measured accumulated electron signal n̂e
(including the quantum yield) substituted for ne and p in eq. (15) to estimate the noise on n̂e.

Lastly, we note that although the parameterization of p(λ) given by eq. (8) has p(λ) > 0 setting in
already at λ ≤ 2.033µm (i.e. at a wavelength notably longer than the λ ≤ 1.4µm value usually quoted
for NIRSpec), the value of p at the blue-most end of Band II at λ = 1.70µm is only p = 0.056, which, if
ignored, according to eq. (14) leads to a worst case ' 5% error in the signal-to-noise estimate. Therefore
in practice, the considerations of this note only need apply to NIRSpec observations taken with the
PRISM or either of the two Band I gratings.
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